C++ MEMORY MODEL
DYNAMIC MEMORY
HEAP VS STACK
LINKED LIST

Problem Solving with Computers-| C++

a
osind ©

GitHub

UCSB Computer Science:

Speed {ldvising

Meet with a CS faculty member!
« Learn about CS UCSB
« Get valuable career advice
. Find research opportunities
« Discover elective choices

Friday, November 9*"
10:00 AM - 1:00 PM
Outside Harold Frank Hall
(by the CSIL labs)

Don’t miss these events!

Talks[16] “How to Start a Startup”:
A fireside conversation with Randy Modos and
UCSB Professor Giovanni Vigna

Time: Nov 14, 2018 3:30p - 5:00p
Location: 1132 Harold Frank Hall

Randy Modos, the president and co-founder of PayJunction,
provides vision and leadership for the company as it pioneers green
payment technology for businesses, helping to reduce costs and
eliminate fraud. Modos met his co-founders at UCSB while pursuing
his B.S. in Computer Science. Together, they took an inspired idea
and grew it into a company that process over $4 billion annually.

Giovanni Vigna is a Professor in the Department of Computer Science
at the University of California in Santa Barbara. His current research
interests include malware analysis, web security, vulnerability
assessment, and mobile phone security. He also edited a book on
Security and Mobile Agents and authored one on Intrusion
Correlation.

L
Pointer pitfalls and memory errors

- Segmentation faults: Program crashes because it attempted to access a
memory location that either doesn’t exist or doesn’t have permission to access

- Examples of code that results in undefined behavior and potential
segmentation fault

int arr[] = {50, 60, 70};

int x = 10;
for(int 1=0; i<=3; i++){ int* p;
cout<<arr([i]<<endl; cout<<*p<<endl;

¥

Where are we going? Data Structures!

15

20

30

Arrays

1]

Trees

Link list

Spanning tree

=

Hashing

Where are we going”? Data structures!!

15

20

30

Arrays

Link list

(CS24/32)

spanning tree

B

Hashing

Address 0x00000000
Text (R/0O)
I .
dzvﬁﬂ f: |1lss Global Data
and O's

! .
|

Stack
Address OxFFFFFFFF

Dynamic memory management

« To allocate memory on the heap use the new operator
(data persists in the heap until the programmer frees it)
* To free the memory use delete

 Identify the location of all the data (Heap or stack?)

int* p= new int; //creates a new integer on the heap
Student* n = new Student; //creates a new Student on the heap
delete p; //Frees the integer

delete n; //Frees the Student

Linked Lists

The Drawing Of List {1, 2, 3}

Stack

head |_ 0

A “head” pointer local to
BuildOneTwoThree() keeps
the whole list by storing a
pointer to the first node.

,) ; Array List
Heap

The overall list is built by connecting the

nodes together by their next pointers. The

nodes are all allocated in the heap. - !

d Linked List
S B E ;_

Each node Each node stores The next field of
stores one one next pointer. the last node is
data element NULL.

(int 1n this
example).

Accessing elements of a linked list

head—>< 1 9_><2

struct Node {
int data;
Node *next;

Y-

Assume the linked list has already been created, what do the following
expressions evaluate to?

1.

2. head
3.
4. head

head

head

->data
->next->data

->next->next->data

->next->next->next->data

A. 1

B. 2

C.3

D. NULL

E. Run time error

Create a small list — use only the stack

* Define an empty list struct Node {

int data;

 Add a node to the list with data = 10 Node *next:

s

L
Heap vs Stack

1 #include <iostream>
2 using namespace std;
3

4 intx createAnInt(){

5

6 int x;

7/ return &x;
3

9 }

Does the above function correctly create a new integer and return
its address? Why or why not?

A. Yes

B. No

L
Heap vs. stack

1 #include <iostream>
2 using namespace std;

3
4 intx createAnIntArray(int len){

int arr[len];
return arr;

O 00 Jd O Un

}

Does the above function correctly create an array of integers?

A. Yes
B. No

Heap vs. stack

Nodex createSmallLinkedList(int x, int y){

Nodex head = NULL;
Node nl1l ={x, NULL};
Node n2 ={y, NULL};
head = &nl;
nl->next = &n2;
return head;

Does the above function correctly create an array of integers?
A. Yes

B. No

e
Dynamic memory pitfalls

Dangling pointer: Pointer points to a memory location that no longer exists

Which of the following functions returns a dangling pointer?

int* f1(int num){
int* meml =new int[num];

return(meml);
}
A. 1
int* f2(int num){ B. f2
int mem2[num]; C. Both
return(mem2); D. Neither
\ :

Dynamic memory pitfalls

Memory leaks (tardy free):
Heap memory not deallocated before the end of program
Heap memory that can no longer be accessed

Example

void foo(){
intx p = new 1int;

Next time

- More Linked Lists

