RECURSION — Frdl Bl ===

Problem Solving with Computers-I

wadl 0\
int co‘“_a 5

Let recursion draw you in....

* Identify the “recursive structure” in these pictures by describing them

Understanding recursive structures

« Recursive names: The pioneers of open source and free software
used clever recursive names

GNU1s NOT Unix

° Reourswe structures In fractals

Zooming into a Koch's snowflake

Suer'pmskl ’rr'langle

L
Recursive algorithms

Tool for solving problems (recursive algorithms)

- Recursive algorithms describe a problem in terms of (smaller versions) of itself
(Practice with linked-lists/arrays but the real fun will be with trees in CS24)

- An everyday example:

To wash the dishes in the sink:
If there are no more dishes °

you are done! @ @

Else:

Wash the dish on top of the stack @ @ @ @
Wash the remaining dishes in the sink

Print the numbers 1 to N recursively

- Write a function to print the numbers from 1 to N (use recursion)

L
Find the factorial of N

- Write a program to find the factorial of a number
NI'=1*2*3*....*N if N>0
=1, ifN<0

L
A new way of looking at inputs

Arrays:
* Non-recursive description: a sequence of elements

* Recursive description: an element, followed by a smaller array

Recursive description of a linked list

head

-G~

* Non-recursive description of the linked list: chain of nodes

* Recursive description of a linked-list: a node, followed by a smaller
linked list

Designing recursive code: print all the elements of an array

Arrays:

* Recursive description: an element, followed by a smaller array

Designing recursive code: sum elements in a linked-list

* Recursive description of a linked-list: a node, followed by a smaller
linked list

head

10 }_.Cm }»Czo }—><4o /)

a4

What,s |n a base Case’? What happens when we execute this code on the

example linked list?

A. Returns the correct sum (120)

B. Program crashes with a segmentation fault
C. Program runs forever

D. None of the above

head

N\

ST ED(a (o

/)

double sumList(Node* head){

double sum = head->value + sumList(head->next);
return sum;

head EEXamples of recursive code

N\

(10 }.(50 }»Cgo) ><4o />

double sumList(Node* head){
if(!'head) return 0;
double sum = head->value + sumList(head->next);
return sum;

¥

L
Find the min element in a linked list

double min(Node* head){
// Assume the linked list has at least one node

assert(head);
// Solve the smallest version of the problem

L
Helper functions

« Sometimes your functions takes an input that is not easy to recurse on

* |n that case define a new function with appropriate parameters: This is
your helper function

« Call the helper function to perform the recursion

For example
double sumLinkedLisr(LinkedList* list){

return sumList(list->head); //sumList is the helper
//function that performs the recursion.

Next time

- More practice with recursion
- Final practice

