
RECURSION

Problem Solving with Computers-I 6

10

40

12

32 4743

45 41

Let recursion draw you in….

• Identify the “recursive structure” in these pictures by describing them

Understanding recursive structures
• Recursive names: The pioneers of open source and free software

used clever recursive names

GNU is NOT Unix
• Recursive structures in fractals

Zooming into a Koch’s snowflake

Sierpinski triangle

Recursive algorithms

Tool for solving problems (recursive algorithms)
- Recursive algorithms describe a problem in terms of (smaller versions) of itself
(Practice with linked-lists/arrays but the real fun will be with trees in CS24)

- An everyday example:
To wash the dishes in the sink:

If there are no more dishes

you are done!

Else:

Wash the dish on top of the stack

Wash the remaining dishes in the sink

6

10

40

12

32 4743

45 41

Print the numbers 1 to N recursively
• Write a function to print the numbers from 1 to N (use recursion)

Find the factorial of N
• Write a program to find the factorial of a number

N! = 1*2*3*….*N if N>0
= 1, if N <0

A new way of looking at inputs

Arrays:

• Non-recursive description: a sequence of elements

• Recursive description: an element, followed by a smaller array

Recursive description of a linked list

50 20 4010

head

• Non-recursive description of the linked list: chain of nodes

• Recursive description of a linked-list: a node, followed by a smaller
linked list

Designing recursive code: print all the elements of an array

Arrays:

• Recursive description: an element, followed by a smaller array

Designing recursive code: sum elements in a linked-list

50 20 4010

head

• Recursive description of a linked-list: a node, followed by a smaller
linked list

What’s in a base case?

50 20 4010

head

double sumList(Node* head){

double sum = head->value + sumList(head->next);
return sum;

}

What happens when we execute this code on the
example linked list?
A. Returns the correct sum (120)
B. Program crashes with a segmentation fault
C. Program runs forever
D. None of the above

Examples of recursive code

4050 2010

head

double sumList(Node* head){
if(!head) return 0;
double sum = head->value + sumList(head->next);
return sum;
}

Find the min element in a linked list

double min(Node* head){
// Assume the linked list has at least one node
assert(head);
// Solve the smallest version of the problem

}

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion

For example
double sumLinkedLisr(LinkedList* list){

return sumList(list->head); //sumList is the helper
//function that performs the recursion.

}

Next time
• More practice with recursion
• Final practice

