
ARGUMENTS TO MAIN()
WORKING WITH FRACTIONS
LOOPS
Problem Solving with Computers-I

Let’s code Fizzbuzz -1.0

$ Enter a number: 1
1
$ Enter a number: 2
2
$ Enter a number: 3
fizz
$ Enter a number: 4
4

2

$Enter a number: 5
5
$Enter a number: 6
fizz
$Enter a number: 7
7
$Enter a number: 15
fizz

Let’s code Fizzbuzz -2.0 (taking arguments from main)

$./fizzbuzz 1
1

$./fizzbuzz 9
Fizz

$./fizzbuzz 15
Fizzbuzz

3

4

Passing arguments to main (via the command line)

• We can pass information into a C++ program through the command line when executing the program.

• The main function will need to have the following:

int main(int argc, char* argv[])

•`int argc` is the number of "arguments" the program has, including the executable name.

• `char* argv[]` is the "list" of arguments passed into the program.

– argv[0]: name of the program

– argv[1]: 1st argument, remember this is a C-string

– Use atoi to convert a C-string to a number atoi(argv[1])

C++ types in expressions
int i =10;
double sum = 1/i;

What is printed by the above code?
A. 0
B. 0.1
C. 1
D. None of the above

Formatting output to terminal
See pages 91 and 190 of textbook
int i =10;
double j = 1/static_cast<double>(i);
cout.setf(ios::fixed); // Using a fixed point representation
cout.setf(ios::showpoint); //Show the decimal point
cout.precision(3);
cout<<j;

What is printed by the above code?
A. 0
B. 0.1
C. 0.10
D. 0.100
E. None of the above

C++ for loops

For loop is used to repeat code (usually a fixed number of times)

General syntax of a for loop:

for (INITIALIZATION; BOOLEAN_EXPRESSION; UPDATE) {
// code
// ...

}
1. Execute the INITIALIZATION statement.
2. Check if BOOLEAN_EXPRESSION is true.

* if true, execute code in the loop.
* execute UPDATE statement.
* Go back to 2.

* if false, do not execute code in the loop.
* exit the loop and resume program execution.

Continue and break
• continue;

• can be used to stop the current iteration of a loop,
• perform the UPDATE statement if necessary, re-check the BOOLEAN_EXPRESSION,

and
• continue with the next iteration of the loop.

* break; can be used to break out of the current loop and continue execution after the end
of the loop.

for (int i = 0; i < 10; i++) {
if (i == 4)

continue;
if (i == 7)

break;
cout << “i = “ << i << endl;

}

The accumulator pattern

Write a program that calculates the series:
1+ 1/2+ 1/3+ ….1/n,
where `n` is specified by the user

While loops

A while loop is used to repeat code while some condition is true

while(BOOLEAN_EXPRESSION)
//Code

}
Check if the BOOLEAN_EXPRESSION is true.

* If true, the statements in loop will execute.
* at the end of the loop, go back to 1.

* If false, the statements in the loop will not execute.
* the program execution after the loop continues.

do-while loops

A while loop is used to repeat code until some condition is no longer true

do{
// Code
// This code is executed at least once

}while(BOOLEAN_EXPRESSION);
1. Execute the code in the loop
2. Check if BOOLEAN_EXPRESSION is true.

* If true, then go back to 1.
* If false, then exit the loop and resume program

execution.

Nested for loops – ASCII art!

./drawSquare 5

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

Write a program that draws a square of a given width

Draw a triangle

./drawTriangle 5

*
* *
* * *
* * * *
* * * * *

Which line of the drawSquare code

(show on the right) would you modify

to draw a right angled triangle

6 for(int j = 0; j < n; j++){ //A
7 for(int i=0; i < n; i++){ //B
8 cout<<"* "; //C
9 }
10 cout<<endl; //D
11 }
12 cout<<endl; //E
13

Infinite loops
for(int y=0;y<10;y--)

cout<<“Print forever\n";

int y=0;
for(;;y++)

cout<<“Print forever\n";

int y=0;
for(;y<10;);

y++;

int y=0;
while(y<10)

cout<<“Print forever\n";

int y=0;
while(y=2)

y++;

How is the pace of the class?
A. Too fast
B. Fast, but I am able to catch up once I do the labs
C. Slow
D. Too slow
E. Its fine for me

Next time
• C++ functions and function call mechanics
• Variable scope (local vs. global)

