
TEST DRIVEN DEVELOPMENT
MAKEFILES
Problem Solving with Computers-I

How difficult do you find the course so far?
A. Too easy
B. Easy, I sail through the labs with little effort
C. Moderately easy/difficult – I have to apply concepts and can complete the

labs and homeworks with moderate effort
D. I understand the material but my partner does everything --- I don’t really

have the confidence to code.
E. I am really struggling and feel underprepared for this class

Announcements
• Midterm next week Oct 25:
For more info see: https://ucsb-cs16-f18-mirza.github.io/exam/e01/

https://ucsb-cs16-f18-mirza.github.io/exam/e01/

The compilation process
Source code

Source code:
Text file stored on
computers hard disk or
some secondary storage

Compiler

Hardware

Executable:
Program in machine code
+Data in binary

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

Run Time

hello.cpp g++ a.out

Executable

g++ is composed of a number of smaller programs
• Code written by others (libraries) can be included
• ld (linkage editor) merges one or more object files with the relevant

libraries to produce a single executable

hello.cpp
a.out

5

g++

hello.s
as

cpp

cc1

ld

Library files
e.g.math.o: the
math library

hello.o

Steps in gcc
• Ask compiler to show temporary files:
$ g++ –S hello.cpp
$ g++ –c hello.o
$ g++ –o hello hello.cpp
$ g++ functions.o main.o –o myhello

hello.cpp a.out

g++
hello.s

as

cpp

cc1

ldhello.o

Make and makefiles
• The unix make program automates the compilation process as specified in a

Makefile
• Specifies how the different pieces of a program in different files fit together to make

a complete program
• In the makefile you provide a recipe for compilation
• When you run make it will use that recipe to compile the program

$ make
g++ testShapes.o shapes.o tdd.o -o testShapes

Specifying a recipe in the makefile
• Comments start with a #
• Definitions typically are a variable in all caps

followed by an equals sign and a string, such as:

testShapes is the target - it is what we want to produce
To produce the executable testShapes we need all the .o files
Everything to the right of ":" is a dependency for testShapes

testShapes: testShapes.o shapes.o tdd.o
#The recipe for producing the target (testshapes) is below
g++ testShapes.o shapes.o tdd.o -o testShapes

Demo
• Basics of code compilation in C++ (review)
• Makefiles (used to automate compilation of medium to large projects) consisting of

many files
• We will start by using a makefile to compile just a single program
• Extend to the case where your program is split between multiple files
• Understand what each of the following are and how they are used in program

compilation
• Header file (.h)
• Source file (.cpp)
• Object file (.o)
• Executable
• Makefile
• Compile-time errors
• Link-time errors

Writing code that works - its not magic :)

s = drawTriangle(5);
cout<<s;

*

Write a function that RETURNS a string representing

an isosceles triangle with a given width

Next time
• Files

