FILE IO AND DATA REPRSENTATION

Problem Solving with Computers-I

Include <iostace stdi
using
int main() l pacebook $\mathrm{n}^{\prime \prime}$;
int maut con Ho
coturn $0 ;$

GitHub

Announcements

- Midterm next Thursday (Oct 25)
- No class on Tuesday (Oct 23)

I/O in programs

Different ways of reading data into programs

- cin
- Command line arguments (int main(int argc, char* argv[])
- Read from file

Ways to output data

- Std output: cout
- Std error: cerr
- Write to file

Where are files stored?

A. In main memory
B. In secondary memory
C. On the processor
D. In C++ programs
E. None of the above

Writing to files

\#include <fstream>
ofstream ofs; // Create a ifstream object ofs.open("animals.txt"); //Open a file to write to ofs<<"Duck \n"<<"Cat\n"<<"Cow\n";

Reading from files

- Open a file
- If open fails, exit
- In a loop
- Read a line
- If you reach the end of file, break
- Else process the line that was read
- Close the file

Reading from files

```
#include <fstream>
ifstream ifs; // Create a ifstream object
ifs.open("numbers.txt"); //Open a file to read
if(!ifs){
    // open failed
}
getline(ifs, line); // read a line from the file into a
    // string line.
    // If you attempt to read past the end
    // of file, ifs change to false
```

// If the file was empty, ifs will be false at this point
ifs.close()

FILE IO: Which of the following is correct?

A. while(1) \{

```
getline(ifs, line);
if (!ifs)
        break;
    cout<<line<<endl;
```

 \}
 B.

```
while(ifs){
    getline(ifs, line);
    cout<<line<<endl;
```

\}

External vs. Internal Representation

- External representation:
-Convenient for programmer -Decimal (base 10)

- Internal representation:
- Actual representation of data in the computer's memory: Always binary (1's and 0's)

Binary representation (base 2)

- On a computer all data is stored in binary
- Only two symbols: 0 and 1
- Each position is called a bit
- Bits take up space

- Actually the data is voltages
- We use the abstraction:
- High voltage: 1 (true)
- Low voltage: 0 (false)

Positional encoding for non-negative numbers

- Each position represents some power of the base
- Decimal (Base 10), Digits (0-9)
- Binary (Base 2), Digits $(0,1)$
- Hex (Base 16), Digits (0-9, A-F)

$101_{5}=$? In decimal

A. 26
B. 51
C. 126
D. 130

Converting between binary and decimal

Binary to decimal: $10110_{2}=?_{10}$

Decimal to binary: $34_{10}=?_{2}$

Hex to binary

- Each hex digit corresponds directly to four binary digits
- Programmers love hex, why?

$25 B_{16}=$? In binary

00	0	0000
01	1	0001
02	2	0010
03	3	0011
04	4	0100
05	5	0101
06	6	0110
07	7	0111
08	8	1000
09	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Hexadecimal to decimal

$25 \mathrm{~B}_{16}=$? Decimal

Hexadecimal to decimal

- Use polynomial expansion
- $25 \mathrm{~B}_{16}=2 * 256+5 * 16+11 * 1=512+80+11$ $=603$
- Decimal to hex: $36_{10}=?_{16}$
A. 8 F 0

Binary to hex: 1000111100

B. 23 C
C. None of the above

BIG IDEA: Bits can represent anything!!

Numbers Binary Code

0
1
2
3

How many (minimum) bits are required to represent the numbers 0 to 3 ?

BIG IDEA: Bits can represent anything!!

Colors Binary code
Red

Green

Blue

BIG IDEA: Bits can represent anything!!

Characters

'a'
'b'
'c'
'd'
'e'
N bits can represent at most 2^{N} things

What is the minimum number of bits required to represent all the letters in the English alphabet in lower case?
A. 3
B. 4
C. 5
D. 6
E. 26

BIG IDEA: Bits can represent anything!!

- Logical values?
$-0 \Rightarrow$ False, $1 \Rightarrow$ True
- colors?
- Characters?

Red

-26 letters $\Rightarrow 5$ bits ($2^{5}=32$)

- upper/lower case + punctuation
$\Rightarrow 7$ bits (in 8) ("ASCII")
- standard code to cover all the world's languages $\Rightarrow 8,16,32$ bits ("Unicode") www.unicode. com
- locations / addresses? commands?
- MEMORIZE: N bits \Leftrightarrow at most 2^{N} things

What is the maximum positive value that can be stored in a byte?

$$
\text { A. } 127
$$

B. 128
C. 255
D. 256

Data types

Binary numbers in memory are stored using a finite, fixed number of bits typically:

8 bits (byte)
16 bits (half word)
32 bits (word)
64 bits (double word or quad)

Data type of a variable determines the:

- exact representation of variable in memory
- number of bits used (fixed and finite)
- range of values that can be correctly represented

Next time

- Arrays

