FILE IO AND DATA REPRSENTATION

Problem Solving with Computers-I

Announcements

- Midterm next Thursday (Oct 25)
- No class on Tuesday (Oct 23)

I/O in programs

Different ways of reading data into programs

• cin

- Command line arguments (int main(int argc, char* argv[])
- Read from file

Ways to output data

- Std output: cout
- Std error: cerr
- Write to file

Where are files stored?

- A. In main memory
- B. In secondary memory
- C. On the processor
- D. In C++ programs
- E. None of the above

Writing to files

#include <fstream>
ofstream ofs; // Create a ifstream object
ofs.open("animals.txt"); //Open a file to write to
ofs<<"Duck\n"<<"Cat\n"<<"Cow\n";</pre>

Reading from files

- Open a file
- If open fails, exit
- In a loop
 - Read a line
 - If you reach the end of file, break
 - Else process the line that was read
- Close the file

Reading from files

```
#include <fstream>
ifstream ifs; // Create a ifstream object
ifs.open("numbers.txt"); //Open a file to read
if(!ifs){
      // open failed
}
getline(ifs, line); // read a line from the file into a
                    // string line.
                    // If you attempt to read past the end
                    // of file, ifs change to false
```

// If the file was empty, ifs will be false at this point
ifs.close()

FILE IO: Which of the following is correct?

```
A. while(1) {
    getline(ifs, line);
    if (!ifs)
        break;
    cout<<line<<endl;
    }</pre>
```

Β.

C. Both A and B are correct

while(ifs) {
 getline(ifs, line);
 cout<<line<<endl;
}</pre>

D. Neither is correct

External vs. Internal Representation

External representation:
 Convenient for programmer
 Decimal (base 10)

• Internal representation:

-Actual representation of data in the computer's memory: Always binary (1's and 0's)

Binary representation (base 2)

- On a computer all data is stored in binary
- Only two symbols: 0 and 1
- Each position is called a *bit*
- Bits take up space
- 8 bits make a *byte*
- Example of a 4-bit number

nec	CLOI	15@	casi	us 7:	~																		×
Θ		1										0	1	1	1		1		1			1	
									0					1			1					1	
				1				Θ					1					Θ					
		0	Θ		1	0		Θ	Θ							1			1			1	
	Θ			Θ						۲	0	1	1					1					
Θ	0	1	1		Θ								Θ										
			1		1	0			1		0						1						
		Θ								Θ							Θ	1		1			
		0					1	1					1					1					
		1			0							1	1	1									
								1			0			1		1	۲			۲		1	
	1								1			0									1		
1			1		1				1									1	1	1		0	
Θ					1		1		0	1	1		Θ	1			Θ				1		
					Θ	1				1					Θ						1		
					1	۲			1								1		1		0		
1	0									Θ		Θ	1	Θ									
							1			1								۲				۲	
	1				Θ		Θ	Ο					1			1	1		Θ				6
۲				۲	1	1		۲		۲								1			۲		
			0										0							1			
					1		Θ		1			1		0	Θ								
1				1				1			1	0							Θ				
						0	Θ										۲						
								1					0			0		1	1	Θ			
											Θ					1						1	
0						۲			1					0	1		۲	1	0		1		
1		1	Θ			1		Θ			1			0	Θ			Θ	1		0		
Θ			0	Θ				1						0				0			1		1
				0		1		0										0					0
							1	1	1			1						1	1	Θ			
						1		1				1				0		0	1	1			6
			1	1		0	Θ					0				1			1			1	
			0	0	1	0	1					1									0	1	6
				0	0		0													0	0	0	
				0																۲		0	

- Actually the data is voltages
- We use the abstraction:
 - High voltage: 1 (true)
 - Low voltage: 0 (false)

Positional encoding for non-negative numbers

- Each position represents some power of the base
- Decimal (Base 10), Digits (0-9)
- Binary (Base 2), Digits (0,1)
- Hex (Base 16), Digits (0-9, A-F)

$$101_5 = ?$$
 In decimal

B. 51

C. 126

D. 130

Converting between binary and decimal

Binary to decimal: $1 \ 0 \ 1 \ 1 \ 0_2 = ?_{10}$

Decimal to binary: $34_{10} = ?_2$

Hex to binary

- Each hex digit corresponds directly to four binary digits
- Programmers love hex, why?

$$25B_{16} = ?$$
 In binary

Hexadecimal to decimal

$$25B_{16} = ?$$
 Decimal

Hexadecimal to decimal

• Use polynomial expansion

• $25B_{16} = 2*256 + 5*16 + 11*1 = 512 + 80 + 11$ = 603

• Decimal to hex: $36_{10} = ?_{16}$

Binary to hex: 1000111100

A. 8F0

B. 23C

C. None of the above

Numbers Binary Code

How many (minimum) bits are required to represent the numbers 0 to 3?

Colors Binary code

How many (minimum) bits are required to represent the three colors?

What is the minimum number of bits required to represent all the letters in the English alphabet in lower case?

A. 3
B. 4
C. 5
D. 6
E. 26

- Logical values? $-0 \Rightarrow$ False, $1 \Rightarrow$ True
- colors ?
- Characters?
 - -26 letters \Rightarrow 5 bits (2⁵ = 32)
 - upper/lower case + punctuation
 ⇒ 7 bits (in 8) ("ASCII")
 - standard code to cover all the world's languages \Rightarrow 8,16,32 bits ("Unicode") www.unicode.com
- locations / addresses? commands?

• MEMORIZE: N bits \Leftrightarrow at most 2^{N} things

What is the maximum positive value that can be stored in a byte?

A. 127

B. 128

C. 255

D. 256

Data types

Binary numbers in memory are stored using a finite, fixed number of bits typically:

- 8 bits (byte)
- 16 bits (half word)
- 32 bits (word)

64 bits (double word or quad)

Data type of a variable determines the:

- exact representation of variable in memory
- number of bits used (fixed and finite)
 - range of values that can be correctly represented

Next time

Arrays