C++ ARRAYS
POINTERS
POINTER ARITHMETIC

Problem Solving with Computers-| ++
(: 3 GitHub
‘u &:ic:: “El,mei,ac" - 5 @

)1\

General model of memory wemory address Value stored

« Sequence of adjacent cells

» Each cell has 1-byte stored in it

« Each cell has an address
(memory location)

@O NoOUhWN=O

L
C++ Arrays

* List of elements
* All elements have the same data type
 The elements re located adjacent to each other in memory

Declare an array to store 3 integers

L
Accessing elements of an array

scores 0 1 2

int scores[]={20,10,50}; // declare and initialize

//Print each element

// Use a for loop

C++11 range based for loops

scores 0 1 2

int scores[]={20,10,50}; // declare an initialize

//Print each element using a range based for loop (C++ 11 feature)

L
Modifying the array

scores 0 1 2

int scores[]={20,10,50}; // declare an initialize

//Increment each element by 10

Tracing code involving arrays

Choose the resulting array after
the code is executed

arr 0 1 2

A. 10 20 30
arr 0 1 2

int arr[]={10,20,30};
int tmp = arr[0]; B. 20 10 30
arr[0] = arr[2]; arr 0 1 E
arr[z] = tmp; c. [30 [20 | 10
arr 0 1 2

D. None of the above

L
Most common array pitfall- out of bound access

scores[0] scores[1] scores[Z]
int scores[]={20,10,50}; // declare an initialize

for (int i=0; i<=3; i++)

scores[i] = scores|[i]+10;

Demo: Passing arrays to functions

Passing arrays to functions

SCores 10 20 30 40 50
0x2000

int main() {

int scores[]={10, 20, 30, 40, 50}; What is the output?
foo(scores); A 10
} B. 1020304050
: C. 0x2000
double foo(int sc[]){ D. None of the above

cout<<sc;

return

Pointers

e Pointer: A variable that contains the address of another variable

* Declaration: type #* pointer name;

int* p;

MAN, | S5UCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERS?

Ox3A28213A
Ox7363632E.

| HATE YOU. /

How to make a pointer point to something

int *p; 100 112

int y = 3; B v

To access the location of a variable, use the
address operator ‘&’

Pointer Diagrams:
Diagrams that show the relationship between pointers and pointees

p pointsto y
100 112

Pointer: p 112 3 Pointee: y

You can change the value of a variable using a pointer !

int *p, y;
y = 3;
P = &y;

Two ways of changing the value of a variable

P
« Change the value of y directly:

« Change the value of y indirectly (via pointer p):

Tracing code involving pointers

int *p;

int x=10;

p = &X;
p = *p + 1;

Q: Which of the following pointer diagrams best represents the outcome of the above code?

A. B.
< |10 x |11

P P

C. Neither, the code is incorrect

Pointer assignment

int *pl, *p2, X;
pl = &X;
p2 = pl;

Q: Which of the following pointer diagrams best represents the outcome of the above code?

A. B.

X X

/\
pl pl p2

p2 C. Neither, the code is incorrect

Arrays and pointers

100 104 108 112 116
20 |30 50 {80 |90

ar

= ar 1s like a pointer to the first element
= ar[0] isthe same as *ar

= ar[2] i1sthe same as * (ar+2)

Use pointers to pass arrays in functions
Use pointer arithmetic to access arrays more conveniently

Pointer Arithmetic

int ar[]={20, 30, 50, 80, 90};

How many of the following are invalid?

.

1.
1.
V.
V.
VI.
VII.
VIILI.
IX.
X.

pointer + integer (ptr+1)
integer + pointer (1+ptr)
pointer + pointer (ptr + ptr)

pointer — integer (ptr — 1)

integer — pointer (1 — ptr)

pointer — pointer (ptr — ptr)

compare pointer to pointer (ptr == ptr)
compare pointer to integer (1 == ptr)
compare pointer to O (ptr == 0)
compare pointer to NULL (ptr == NULL)

#invalid

HOQWpw
R WwN R

Pointer Arithmetic
int ar[]={20, 30, 50, 80, 90};

int *p;

p = arr;
p=p+ 1;
*p = *p + 1;

Draw the array ar after the above code is executed

char arrays, C-strings

 How are ordinary arrays of characters and C-strings similar and how are
they dissimilar?

What is the output of the code?

char sl1[] = "Mark";

char s2[] = "Jill";

for (int 1 = 0; 1 <= 4; i++)
s2[i] = s1[il;

if (s1 == s2) s1 = "Art";
cout<<sl<<" '"<<s2<<endl:

A. Mark Jill
Mark Mark
Art Mark

Compiler error

m o O W

Run-time error

Two important facts about Pointers

A pointer can only point to one type —(basic or derived) such as int,
char, a struct, another pointer, etc

After declaring a pointer: int *ptr;
ptr doesn’t actually point to anything yet.
We can either:
make 1t point to something that already exists, OR
allocate room 1n memory for something new that it will point to

Pointer Arithmetic

 What if we have an array of large structs (objects)?

» C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the
memory address, but rather adds the size of the array
element.

» C++ knows the size of the thing a pointer points to — every
addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an 1nt, etc.

Next time

- References
- Call by value, call by reference and call by address

