
C++ ARRAYS
POINTERS
POINTER ARITHMETIC

Problem Solving with Computers-I

General model of memory
• Sequence of adjacent cells

• Each cell has 1-byte stored in it
• Each cell has an address

(memory location)

0
1
2
3
4
5
6
7
8
9
10

Memory address Value stored

C++ Arrays

• List of elements
• All elements have the same data type
• The elements re located adjacent to each other in memory

Declare an array to store 3 integers

Accessing elements of an array

int scores[]={20,10,50}; // declare and initialize
//Print each element

// Use a for loop

scores 0 1 2

C++11 range based for loops

int scores[]={20,10,50}; // declare an initialize
//Print each element using a range based for loop (C++ 11 feature)

scores 0 1 2

Modifying the array

int scores[]={20,10,50}; // declare an initialize
//Increment each element by 10

scores 0 1 2

Tracing code involving arrays

int arr[]={10,20,30};
int tmp = arr[0];
arr[0] = arr[2];
arr[2] = tmp;

arr 0 1 2
10 20 30

Choose the resulting array after
the code is executed

20 10 30

30 20 10

A.

B.

C.

D. None of the above

arr 0 1 2

arr 0 1 2

arr 0 1 2

Most common array pitfall- out of bound access

int scores[]={20,10,50}; // declare an initialize
for(int i=0; i<=3; i++)

scores[i] = scores[i]+10;

scores[0] scores[1] scores[2]

Demo: Passing arrays to functions

Passing arrays to functions

int main(){
int scores[]={10, 20, 30, 40, 50};
foo(scores);

}
double foo(int sc[]){

cout<<sc;
return

}

scores 10 20 30 40 50

What is the output?

A. 10
B. 10 20 30 40 50
C. 0x2000
D. None of the above

0x2000

• Pointer: A variable that contains the address of another variable
• Declaration: type * pointer_name;

10

int* p;

Pointers

11

int *p;
int y = 3; p y

100 112

How to make a pointer point to something

To access the location of a variable, use the
address operator ‘&’

12

p
112

y
3

100 112

Pointer Diagrams:
Diagrams that show the relationship between pointers and pointees

Pointer: p Pointee: y

p points to y

You can change the value of a variable using a pointer !

13

int *p, y;
y = 3;
p = &y;

*p = 5;

p
y 3

14

• Change the value of y directly:

• Change the value of y indirectly (via pointer p):

Two ways of changing the value of a variable

Tracing code involving pointers

Q: Which of the following pointer diagrams best represents the outcome of the above code?

15

int *p;
int x=10;
p = &x;
*p = *p + 1;

A.
10x

B.
x

C. Neither, the code is incorrect

11

p p

Pointer assignment

Q: Which of the following pointer diagrams best represents the outcome of the above code?

16

int *p1, *p2, x;
p1 = &x;
p2 = p1;

A.

x
B.

x

C. Neither, the code is incorrect

p1

p2

p1 p2

▪ ar is like a pointer to the first element

▪ ar[0] is the same as *ar

▪ ar[2] is the same as *(ar+2)

ar

100 104 108 112 116

20 30 50 80 90

▪ Use pointers to pass arrays in functions
▪ Use pointer arithmetic to access arrays more conveniently

Arrays and pointers

Pointer Arithmetic

How many of the following are invalid?
I. pointer + integer (ptr+1)
II. integer + pointer (1+ptr)
III. pointer + pointer (ptr + ptr)
IV. pointer – integer (ptr – 1)
V. integer – pointer (1 – ptr)
VI. pointer – pointer (ptr – ptr)
VII. compare pointer to pointer (ptr == ptr)
VIII. compare pointer to integer (1 == ptr)
IX. compare pointer to 0 (ptr == 0)
X. compare pointer to NULL (ptr == NULL)

#invalid
A: 1
B: 2
C: 3
D: 4
E: 5

int ar[]={20, 30, 50, 80, 90};

Pointer Arithmetic

int *p;
p = arr;
p = p + 1;
*p = *p + 1;

Draw the array ar after the above code is executed

int ar[]={20, 30, 50, 80, 90};

char arrays, C-strings

• How are ordinary arrays of characters and C-strings similar and how are
they dissimilar?

What is the output of the code?

A. Mark Jill

B. Mark Mark

C. Art Mark

D. Compiler error

E. Run-time error

char s1[] = "Mark";
char s2[] = "Jill";
for (int i = 0; i <= 4; i++)

s2[i] = s1[i];
if (s1 == s2) s1 = "Art";
cout<<s1<<" "<<s2<<endl;

Two important facts about Pointers
22

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;
ptr doesn’t actually point to anything yet.
We can either:
➢make it point to something that already exists, OR
➢allocate room in memory for something new that it will point to

Pointer Arithmetic

▪ What if we have an array of large structs (objects)?
▪C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.
▪C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

Next time
• References
• Call by value, call by reference and call by address

