
REFERENCES, POINTERS
PASSING PARAMETERS TO
FUNCTIONS

Problem Solving with Computers-I

How far along are you with lab04
A. Almost done
B. I am on track to finish
C. I am stuck and don’t know how to proceed
D. Haven’t started

void swapValue(int x, int y){
int tmp = x;
x = y;
y = tmp;

}
int main() {

int a=30, b=40;

cout<<a<<" "<<b<<endl;

swapValue(a, b);

cout<<a<<" "<<b<<endl;

}

Pass by value
What is printed by

this code?

A.

30 40

30 40

B.

30 40

40 30

C. Something else

References in C++

int main() {
int d = 5;
int &e = d;

}

A reference in C++ is an alias for
another variable

4

References in C++

int main() {
int d = 5;
int & e = d;
int f = 10;
e = f;

}

How does the diagram change with this code?

C. 10

10
d:
e:

10f:

A. B.
5

10

D. Other or error

5

d:
e:
f:

d:
e:
f:

int a = 5;
int &b = a;
int *pt1 = &a;

What are three ways
to change the value of
‘a’ to 42?

6

Pointers and references: Draw the diagram for this code

Passing parameters by reference

void swapValue(int x, int y){
int tmp = x;
x = y;
y = tmp;

}

int main() {

int a=30, b=40;

swapValue(a, b);

cout<<a<<" "<<b<<endl;

}

Passing parameters by address

void swapValue(int x, int y){
int tmp = x;
x = y;
y = tmp;

}

int main() {

int a=30, b=40;

swapValue(a, b);

cout<<a<<" "<<b<<endl;

}

Which of the following is true after IncrementPtr(q)is called
in the above code:

void IncrementPtr(int *p){
p++;

}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(q);

A. ‘q’ points to the next element in the array with value 60
B. ‘q’ points to the first element in the array with value 50

How should we implement IncrementPtr(),so that ‘q’ points to 60
when the following code executes?

void IncrementPtr(int **p){
p++;

}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(&q);

A. p = p + 1;
B. &p = &p + 1;
C. *p= *p + 1;
D. p= &p+1;

Two important facts about Pointers
11

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;
ptr doesn’t actually point to anything yet.
We can either:
➢make it point to something that already exists, OR
➢allocate room in memory for something new that it will point to
➢Null check before dereferencing

Pointer Arithmetic

▪ What if we have an array of large structs (objects)?
▪C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.
▪C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

Pointer pitfalls
• Dereferencing a pointer that does not point to anything results in

undefined behavior.

• On most occasions your program will crash

• Segmentation faults: Program crashes because code tried to access
memory location that either doesn’t exist or you don’t have access to

Next time
• Structs
• Arrays of structs

